容易混淆的数学概念(三)

逍遥学能  2014-03-04 11:43

  直角是一个图形,它是平角的一半。“90o”是一个量,指的是“直角”的大小。不能把一个图形和这个图形的大小两个不同的概念混淆起来 高中语文。因此,完整地回答“什么是直角?”应该是“直角是平角的一半”或“90o的角叫直角。”

  “同位角”和“平行线中的同位角”

      平面上有二直线,第三条直线分别和直线和相交,就得到八个角,即∠1、∠2、∠3、∠4、∠5、∠6、∠7和∠8。这三条直线和八个角,通常称作“三线八角”(图1)

 

(图1)

  这八个角中,∠1和∠5,∠4和∠8,∠2和∠6,∠3和∠7都叫做同位角。除了同位角,这八个角中,还有内错角、外错角、同旁内角、同旁外角等名称。

  如果直线∥,根据平行线的性质,就可以知道∠1=∠5,∠4=∠8,∠2=∠6,∠3=∠7。也就是说,一直线与二平线相交,同位角相等(图2)。

 

(图2)


  这样看来,“同位角”一般来说是不等的,只有在平行线中的同位角才能相等。不要一提同位角,就错误地把它们理解为一定是相等的。

  “命题”和“定理”

       人们在概念的基础上,使用判断和推理的方法,就可以产生出合乎论理的结论来。例如

  化肥是无机肥料;

  过两点可以引一条直线;

  三角形三内角的和等于180o;

  有些直角不相等。

  这些表示判断的句子都是命题。

  命题最基本的特点,就是可以谈论它对不对。一个命题是正确的,我们就说它是真命题;要是不正确,我们就说它是假命题。不管是真命题还是假命题,都是命题。像“三辆卡车”、“在公园里散步”这一类话,不好说它正确不正确,就不是命题了。

  有些命题的正确性,可以用已有的数学概念和规律,经过推理,证明它是正确的。这种命题叫做定理。例如“三角形三内角的和等于180o”就是一个定理。

  有的同学认为,只有正确的命题才算命题。这种看法是不对的。命题可真可假。“有些直角不相等”就是一个假的命题。

  定理都是正确的命题。要是你说“某定理不成立”,这是自相矛盾的。因为既然是定理,它就一定成立。如果说“某命题不成立”是可以的,不能把命题和定理混为一谈。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:女主人
下一篇:三角函数的诱导公式(一)教学设计

逍遥学能在线培训课程推荐

【容易混淆的数学概念(三)】相关文章
【容易混淆的数学概念(三)】推荐文章