圆锥曲线学案练习题

逍遥学能  2013-12-03 11:11

j.Co M
§2.1 圆锥曲线

一、知识要点
1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆;抛物线模型的过程;
2.椭圆的定义:
3.双曲线的定义:
4.抛物线的定义:
5.圆锥曲线的概念:
二、例题
例1.试用适当的方法作出以两个定点 为焦点的一个椭圆。

例2.已知:
⑴到 两点距离之和为9的点的轨迹是什么图形?
⑵到 两点距离之差的绝对值等于6的点的轨迹是什么图形?
⑶到点 的距离和直线 的距离相等的点的轨迹是什么图形?
例3.(参选)在等腰直角三角形 中, , ,以 为焦点的椭圆过 点,过点 的直线与该椭圆交于 两点,求 的周长。

三、课堂检测
1.课本P26 2www.
2.课本P26 3
3.已知 中, 且 成等差数列。
⑴求证:点 在一个椭圆上运动;
⑵写出这个椭圆的焦点坐标。

四、归纳小结

五、课后作业
1.已知 是以 为焦点,直线 为准线的抛物线上一点,若点M到直线 的距离为 ,则 =

2.已知点 ,动点 满足 ,则点 的轨迹是 。
3.已知点 ,动点 满足 ( 为正常数)。若点 的轨迹是以 为焦点的双曲线,则常数 的取值范围是 。
4. 已知点 ,动点 满足 ,则动点 的轨迹是 。
5.若动圆与圆 外切,对直线 相切,则动圆圆心的轨迹是 。
6.已知 中, ,且 成等差数列。
⑴求证:点 在一个椭圆上运动;⑵写出这个椭圆的焦点坐标。

7.已知 中, 长为6,周长为16,那么顶点 在怎样的曲线上运动?

8.如图,取一条拉链,打开它的一部分,在拉开的两边上各选择一点,分别固定在点 上。把笔尖放在点 处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线,这条曲线是双曲线的一支,试说明理由。

9.若一个动点 到两个定点 的距离之差的绝对值为定值 ,试确定动点 的轨迹。
10.动点 的坐标满足 ,试确定 的轨迹。
六、预习作业
1.方程 表示椭圆则 的取值范围 。
2.方程 表示焦点在 轴上 。
3.方程 的焦点坐标为 。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:向量的减法运算及其几何意义
下一篇:两角和与差的正弦与余弦函数

逍遥学能在线培训课程推荐

【圆锥曲线学案练习题】相关文章
【圆锥曲线学案练习题】推荐文章