二次函数的性质与图像

逍遥学能  2013-11-14 10:38

一 学习目标: 1、 掌握二次函数的图象及性质;
2、 会用二次函数的图象与性质解决问题;
学习重点:二次函数的性质;
学习难点:二次函数的性质与图像的应用;
二 知识点回顾:
函数 的性质
函数函数

图象a>0a<0

性质

三 典型例题:
例 1:已知 是二次函数,求m的值
例 2:(1)已知函数 在区间 上为增函数,求a的范围;
(2)知函数 的单调区间是 ,求a;
例 3:求二次函数 在区间[0,3]上的最大值和最小值;

变式:(1)已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

(2)已知 在区间[0,1]内有最大值-5,求a。

(3)已知 ,a>0,求 的最值。


四、 限时训练:
1 、如果函数 在区间 上是增函数,那么实数a的取值
范围为 B
A 、a≤-2 B、a≥-2 C、a≤-6 D、B、a≥-6
2 、函数 的定义域为[0,m],值域为[ ,-4],则m的取值范围是
A、 B、 C、 D、
3 、定义域为R的二次函数 ,其对称轴为y轴,且在 上为减函数,则下列不等式成立的是
A、 B、
C、 D、
4 、已知函数 在[0,m]上有最大值3,最小值2,则m的取值范围是
A、 B、 C、 D、
5、 函数 ,当 时是减函数,当 时是增函数,则
f(2)=
6、 已知函数 ,有下列命题:
① 为偶函数 ② 的图像与y轴交点的纵坐标为3
③ 在 上为增函数 ④ 有最大值4
7、已知 在区间[0,1]上的最大值为2,求a的值。

8、已知 在[t,t+1]上的最小值为g(t),求g(t)的表达式。

9、已知函数 ,求a的取值范围使 在[-5,5]上是单调函数。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:《幂函数》教学设计
下一篇:函数

逍遥学能在线培训课程推荐

【二次函数的性质与图像】相关文章
【二次函数的性质与图像】推荐文章