初中几何中的最值问题解析

逍遥学能  2012-12-06 17:47

在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决通常有两种:

(1) 应用几何性质:

① 三角形的三边关系:两边之和大于第三边,两边之差小于第三边;

② 两点间线段最短;

③ 连结直线外一点和直线上各点的所有线段中,垂线段最短;

④ 定圆中的所有弦中,直径最长。

⑵运用代数证法:

① 运用配方法求二次三项式的最值;

② 运用一元二次方程根的判别式。

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P&rsquo 初中政治;,BP’,在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。取点A关于直线L的对称点A’,则AP’= AP,在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:怎样才能打好七年级的数学基础呢?
下一篇:初中数学知识点总结:可化为一元一次方程的分式方程

逍遥学能在线培训课程推荐

【初中几何中的最值问题解析】相关文章
【初中几何中的最值问题解析】推荐文章