逍遥学能 2015-08-06 15:38
【—三角形与三角函数】三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC。
三角形与三角函数
1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)
2、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)
3、三角形中的恒等式:
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
定义域和值域
sin(x),cos(x)的定义域为R,值域为[-1,1]。
tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。
cot(x)的定义域为x不等于kπ(k∈Z),值域为R。
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²+b²) , c+√(a²+b²)]
三角函数的画法
以y=sinx的图像为例,得到y=Asin(ωx+φ)的图像:
方法一:
y=sinx→【左移(φ>0)/右移(φ<0) ∣∣∣φ∣个单位】 →y=sin(x+φ)→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0
方法二:
y=sinx→【纵坐标不变,横坐标伸缩到原来的(1/ω)】→y=sinωx→【左移(φ>0)/右移(φ<0)∣φ∣/ω 个单位】→y=sin(ωx+φ) →【纵坐标变为原来的A倍(伸长[A>1] / 缩短[0
温馨提示:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA。