逍遥学能 2015-03-15 12:33
【摘要】做一个好的复习计划,有条不紊的做事,才能提高学习效率。小编为大家提供了高考备考,希望大家喜欢。
《数学科考试说明》规定,数学科考试的宗旨是:测试中学数学的基础知识、基本技能、基本思想和方法;考查逻辑思维能力、运算能力、空间想象能力,以及分析问题和解决问题的能力。对能力的考查是由数学科的特点和高考的性质决定的,数学由于其逻辑的严密性、结论的确定性和应用的广泛性的特点,在培养学生能力的过程中发挥重要的作用,被称为锻炼思维的“体操”。因此,数学科考试应力图发挥学科的特点,测试考生的能力水平。同时,高考是选拔性考试,注重预测效度,主要考查学生的学习潜能,因此,数学科考试应在考查基础知识、基本技能、基本思想方法的同时,运用数学材料考查考生的能力。
数学学习中,逻辑思维能力、运算能力和空间想象能力是学生学习的基础,是对学生数学认知特点的概括,是在数学活动中表现和培养的,带有数学的特点,因此被认为是数学能力。数学高考中注意分析其内涵,从不同侧面不同层次考查学生数学能力。
一.逻辑思维能力
“会对问题或数学材料进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行判断与推理;能准确、清晰、有条理地进行表述。”这是《考试说明》对“逻辑思维能力”的三个层次的说明,这三个层次体现在解题过程中,表现为:能正确领会题意,明确解题目标;能寻找到实现解题目标的方向和合适的解题步骤;能通过合乎逻辑的推理和运算,正确地表述解题过程。重点是后两个层次。“寻找解题的方向和步骤”,是充分运用观察、比较、类比、分析、综合、演绎、归纳、抽象、概括等思维方式,对试题的条件和结论提供的外在信息与自身脑中的储存的内在信息进行提取、组合、加工和转化,明确解题方向,形成解题策略,确定解题方法,选择解题步骤。“合乎逻辑的推理和运算”中演绎推理的过程,这个过程要保证推理的合理性和论证的严密性,就必须掌握好有关的逻辑知识,如命题的充要条件、等价命题、逻辑划分、推理规则等,从而做到因果关系明晰、推理步步有据,陈述层次清楚,论证完美无缺。
数学的逻辑思维过程,也就是运用数学的思想和方法,目的明确地对外来的和内在的信息进行提取与转化、加工与传输的思维活动过程。在整个过程中,要求合乎逻辑,不悖常理,并能达到最终目的,同时还要将其正确陈述,让人信服。逻辑思维能力是数学能力的核心,数学是一个各部分紧密联系的逻辑系统,在数学领域中,只有被严密证明了的结论才被承认为正确。数学证明离不开演绎推理,演绎推理能力是逻辑思维能力的重要组成部分。高考中对演绎推理的要求是:(1)因果关系交代清晰明了,绝不含糊,无论是由因导果,还是由果索因,陈述时,都应明白无误,层次清楚,有条不紊;(2)合乎逻辑,说明充分,根据确切、可靠;(3)概念、术语、公式、定理和字符的运用,应当正确、恰当和规范,并且合乎习惯;(4)论证完整,不重不漏。
归纳也是进行数学推理的一种能力,归纳的方法是获得数学结论的一个途径,运用不完全归纳法,通过观察、实验,从特例中归纳出一般结论,形成猜想,然后加以证明,这是数学研究的基本方法之一。培养和提高学生的观察、分析和归纳能力,是逻辑思维能力培养的重要方面。
近年的高考试题,在考查逻辑思维能力时,常常与运算能力结合考查,推导或证明问题的结论,往往需要通过具体地运算;同时,在计算题中,也较多地揉进了逻辑推理的成份,边推理边计算,不经推理则无法计算。
二.运算能力
“会根据概念、公式和法则对数、式和方程进行正确的运算和变形;能分析条件,寻求与设计合理、简捷的运算途径;能根据要求对数据进行估计,并能进行近似计算。”这是《考试说明》对“运算能力”的要求。准确是运算的最基本的要求,正确地记忆和运用运算公式及法则,是运算准确的前提,是“运算能力”第一层次的要求。要使运算能合理、简捷,对公式和法则做到能正用、反用、变用和活用,寻找捷径,迅速获得运算结果,这是“运算能力”第二层次的要求。注意运算与推理的结合,当然运算也是一种推理,这里指的是运算中考虑可能的推理,交互使用运算与推理,通过推理简化运算过程或寻找更为合理的运算程序,这是运算能力的更高层次的要求。
运算能力是一项基本能力,在高考中半数以上的题目需要运算,运算不仅可求出结果,有时还可辅助证题。在高考中,对运算能力的考查是比较全面的,涉及到实数、复数、整式、分式、根式、对数式、三角式、集合等运算,包括数值计算和字母推演。准确是运算的基本要求,简捷、合理是对考生思维深刻性、灵活性的考查,熟练,迅速是对思维敏捷性的考查。在高考中考查运算能力,一般不是增大每题的计算量,而是通过控制每题的计算量,增加题目量,一些题目需要一些技巧来解,而且注意精确与迅速、简捷与熟练相结合,注重考查算理。
怎样提高运算能力呢?(1)必须概念清楚,熟练掌握公式、法则;(2)要求解题思路明确,遇到一个题目后要分析题目要求,比较各种解法,从中选出一种简捷、合理的解法,切忌还没有理解题意就写上一些公式,套用一些思路和技巧,舍简就繁;(3)要自己动手真正解一些题目,体会各种技巧的应用方法,总结解题规律,切不能只满足于知道解法,明了思路。