高中数学解题策略与技巧
逍遥学能 2017-08-19 11:43
为了使回想、联想、猜想的方向更明确,思路更加通畅,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点都在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考查,发现原题的解题思路,最终达到解决原题的目的。基于这样的认识,常用的解题策略有以下几种。
一、熟悉化策略
所谓熟悉化策略,就是当我们面对一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题),以及它们的联系方式上多下工夫。
常用的途径有以下几条。
(一)充分联想回忆基本知识和题型。
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)全方位、多角度分析题意。
对于同一道数学题,常常可以从不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素。
数学中,同一素材的题目常常可以有不同的表现形式,条件与结论(或问题)之间也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型,等等。
二、简单化策略
所谓简单化策略,就是当我们面对一道结构复杂、难以入手的题目时,设法把它转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考查,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径很多,常用的有以下几条。
(一)寻求中间环节,挖掘隐含条件。
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
(二)分类考察讨论。
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。