两平面垂直

逍遥学能  2014-01-07 10:45

j.Co M
总 课 题平面与平面的位置关系总课时第13课时
分 课 题两平面垂直 分课时第2课时
目标理解二面角及其平面角的概念;掌握两个平面垂直的判定定理和性质定理及简单应用.
重点难点二面角的平面角;两个平面垂直的判定定理和性质定理的应用.
?引入新课
1.早读课时,需要将书本打开一定的角度.如何刻画两个平面所形成的这种“角”呢?
二面角的概念:
2.一般地,____________________________________,那么就说这两个平面互相垂直.
(1)两个平面垂直的判定定理:
语言表示:

符号表示:
(2)两个平面垂直的性质定理:
语言表示:

符号表示:
?例题剖析
例1  如图,在正方体ABCD-A1B1C1D1中,
(1)求二面角D1-AB-D的大小;
(2)求二面角A1-AB-D的大小.

例2  如图,正方体ABCD-A1B1C1D1,求证:平面B1AC⊥平面B1BDD1.

?巩固练习
. 1.如图正方体ABCD-A1B1C1D1中,二面角C1-BD-C的值_____________.

2.如图,已知AB是平面α的垂线,AC是平面α的斜线,CD α,CD⊥AC,则面面垂直的有___________________________________________________________________.
3.如图,∠AOB是二面角α-CD-β的平面角,AE是△AOB的OB边上的高,回答下列问题,并说明理由.
(1)CD与平面AOB垂直吗?
(2)平面AOB与α、β垂直吗?
(3)AE与平面β垂直吗?

?课堂小结
二面角的平面角;两个平面垂直的判定定理和性质定理的应用.
?课后训练
班级:高一( )班 姓名:____________
一 基础题
1.设m 、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题中正确命题的序号是______________________.
①若m⊥α,n //α,则m⊥n; ②若α//β,β//γ, m⊥α,则m⊥γ;
③若m //α,α⊥β,则m //α; ④若α⊥γ,β⊥γ,则α//β.
2.已知平面α⊥β,α∩β= l ,P是空间一点,且P到α、β的距离分别是1、2,则点P到l 的距离为_____________ .
二 提高题
3.如图,已知PA⊥平面ABC,AB是⊙O的直径,C是⊙O上的任一点.
求证:平面PAC⊥平面PBC.

4.如图,α⊥β,α∩β= l,AB α,AB⊥l,BC β,DE β,BC⊥DE,
求证:AC⊥DE.

三 能力题
5.在四棱锥P-ABCD中,若PA⊥平面ABCD,且ABCD是菱形,求证:平面PAC⊥平面PBD.


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:函数的定义域
下一篇:直观图的画法

逍遥学能在线培训课程推荐

【两平面垂直】相关文章
【两平面垂直】推荐文章