逍遥学能 2017-04-27 09:43
实施反例教学要注意的问题
(一)注意反例教学的引入
根据学生年龄、生理及心理特征,以及所学知识结构的不完整性,有时还不具备独立系统地推理论证的能力,思维受到一定的局限,考虑问题可能还会不够全面,在教学过程中要注意反例教学引入的合理性和可行性。
(二)注意反例教学的构建
教师在进行教学时,不但要适当地使用反例,更重要的是要善于引导学生构建反例,这实际上是为学生创设了一种探索情景,又由于在通常情况下,许多反例的构建不是惟一的,这就需要学生对所学知识有深刻、透彻的理解,并调动他们全部的数学功底,充分展开想象,因此,构建反例的过程也是学生思维发挥和训练过程。
例如在讲授《实数》一节时,我曾安排了这样一个思考题:两个无理数的和是否一定是无理数?学生们马上举出几个反例如π与-π;它们的和都等于零是有理数。这些反例的共同特征是:互为相反数的两无理数和为有理数。
在此问题的基础上,教师可以进一步地追问:两个无理数的积是否一定是无理数?两个有理数的和或者积是否一定是有理数?一个无理数与一个有理数的和是否一定是无理数?一个无理数与一个有理数的积是否一定是无理数?
通过对这些问题作更多更深入的一些研究,这不仅可以培养学生思维的发散性,还可以加深对有理数、无理数概念的理解,弄清有理数和无理数之间的关系。
这一事例说明教师在日常教学中,可经常选择一些典型的数学知识或问题,通过创设问题情景,引导学生构建反例,引导学生敢于和善于发现问题或提出问题,爱护、支持和鼓励学生中的一切含有创造因素的思想和活动,从而提高学生的思维能力。
(三)注意反例教学的逐层深入性
在教学时,反例的构建要根据学生的认知发展水平和已有的知识结构逐层深入地进行,把某些难度较大的问题分解为一些小的梯度题。
例如在教学三角形全等的判定定理时,学生在掌握基本的几个判定定理(SSS,SAS,ASA,AAS)后,教师可让学生判断:三个角对应全等的三角形全等;有两边及其其中一边所对的角对应相等的两个三角形全等。三角对应相等的三角形全等的反例比较容易列举,例如三角板中的两个三角形。但是有两边及其其中一边所对的角对应相等的两个三角形全等的反例却较难构建。为了解决这个问题,教师可以先固定某些边或者某些角对应相等以后再让学生构建反例。可以先固定∠A=∠A’,AC=A’C’,在此基础上引导学生进一步思考若BC=B’C’=a,说明BC或B‘C‘可以通过以下作图方法来画出:以C或者C’为圆心,a为半径画弧,a只要满足一定的条件,此时所画的弧就很可能与AB或者A’B’所在的直线有两个交点,这是再构造出不全等的三角形就减少了难度。