2016年中考数学考前辅导:不等式与不等式组概念

逍遥学能  2017-03-01 15:57

1.不等式:用符号,,,表示大小关系的式子叫做不等式。

2.不等式分类:不等式分为严格不等式与非严格不等式。

一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。

3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

5.不等式解集的表示方法:

(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-12的解集是x3

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

6.解不等式可遵循的一些同解原理

(1)不等式F(x)G(x)与不等式G(x)F(x)同解。

(2)如果不等式F(x)G(x)的定义域被解析式H(x)的定义域所包含,那么不等式F(x)G(x)与不等式H(x)+F(x)

(3)如果不等式F(x)G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x)G(x)与不等式H(x)F(x)0,那么不等式F(x)G(x)与不等式H(x)F(x)H(x)G(x)同解。

7.不等式的性质:

(1)如果xy,那么yy;(对称性)

(2)如果xy,y那么x(传递性)

(3)如果xy,而z为任意实数或整式,那么x+z(加法则)

(4)如果xy,z0,那么xz如果xy,z0,那么xz

(5)如果xy,z0,那么xzy如果xy,z0,那么xz

(6)如果xy,mn,那么x+my+n(充分不必要条件)

(7)如果x0,m0,那么xmyn

(8)如果x0,那么x的n次幂y的n次幂(n为正数)

8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

9.解一元一次不等式的一般顺序:

(1)去分母(运用不等式性质2、3)

(2)去括号

(3)移项(运用不等式性质1)

(4)合并同类项

(5)将未知数的系数化为1(运用不等式性质2、3)

(6)有些时候需要在数轴上表示不等式的解集

10.一元一次不等式与一次函数的综合运用:

一般先求出函数表达式,再化简不等式求解。

11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

了一个一元一次不等式组。

12.解一元一次不等式组的步骤:

(1)求出每个不等式的解集;

(2)求出每个不等式的解集的公共部分;(一般利用数轴)

(3)用代数符号语言来表示公共部分。(也可以说成是下结论)

13.解不等式的诀窍

(1)大于大于取大的(大大大);

例如:X-1,X2,不等式组的解集是X2

(2)小于小于取小的(小小小);

例如:X-4,X-6,不等式组的解集是X-6

(3)大于小于交叉取中间;

(4)无公共部分分开无解了;

14.解不等式组的口诀

(1)同大取大

例如,x2,x3,不等式组的解集是X3

(2)同小取小

例如,x2,x3,不等式组的解集是X2

(3)大小小大中间找

例如,x2,x1,不等式组的解集是1

(4)大大小小不用找

例如,x2,x3,不等式组无解

15.应用不等式组解决实际问题的步骤

(1)审清题意

(2)设未知数,根据所设未知数列出不等式组

(3)解不等式组

(4)由不等式组的解确立实际问题的解

(5)作答

16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:初中数学分式方程知识点
下一篇:三角函数诱导九年级同步数学公式(6)

逍遥学能在线培训课程推荐

【2016年中考数学考前辅导:不等式与不等式组概念】相关文章
【2016年中考数学考前辅导:不等式与不等式组概念】推荐文章