逍遥学能 2013-01-20 17:26
九 年 级 数 学 第一学期期末学情分析
试 卷
注意:本试题共120分,答题时间120分钟.在答题纸上答题。你一定要细心,并请你注意分配答题时间,祝你考试成功!
一、题(每题2分,共24分.)
1.当x ▲ 时, 有意义.
2.计算: ▲ .
3.若x=1是关于方程x2-5x+c=0的一个根,则该方程的另一根是 ▲ .
4.抛物线 的顶点坐标是 ▲ .
5.如图,在□ABCD中,AC、BD相交于点O,点E是AB的中点,OE=3c,则AD的长是 ▲ c.
(第5题图) (第8题图) (第10题图)
6.等腰梯形的上底是4c,下底是10c,一个底角是60,则等腰梯形的腰长是 ▲ c.
7.已知一个等腰三角形的两边长是方程x2-6x+8=0的两根,则该三角形的周长是 ▲ .
8.一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是 ▲ .
9.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120,则圆锥的母线长是 ▲ .
10.如图,PA、PB是⊙O是切线,A、B为切点, AC是⊙O的直径,若∠BAC=25,则∠P=
▲ 度.
11.小张同学想用“描点法”画二次函数 的图象,取自变量x的5个值,请你指出这个算错的y值所对应的x= ▲ .
x…-2-1012…
y…112-125…
12.将长为1 ,宽为a的矩形纸片( ),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一 下,剪下一 个边长等于此时矩形宽 度的正方形(称为第二次操作);如此再操作一次,若在第3次操作后,剩下的矩形为正方形,则 a的值为¬¬¬¬ ▲ ¬¬ .
二、:(本大题共5小题,每小题3分,共15分)
13.将二次函数 化为 的形式,结果正确的是
A. B.
C. D.
14.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得: 甲= 乙,S2甲=0.025,S2乙=0.026,下列说法正确的是
A.甲短跑成绩比乙好 B. 乙短跑成绩比甲好
C. 甲比乙短跑成绩稳定D. 乙比甲短跑成绩稳定
15. 若关于 的方程 有两个不相等的实数根,则 的取值范围是
A. B. 且
C. D. 且
16.若两圆的直径分别是2c和10c,圆心距为8c,则这两个圆的位置关系是
A.内切 B.相交 C.外切 D.外离
17.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论
中正确的是
A.当x>1时,y随x的增大而增大
B.3是方程ax2+bx+c=0的一个根
C.a c>0
D.a+b+c<0
三、解答题:
18.(本题5分)计算:
19.(本题5分)化简: ( ).
20.(本题10分,每小题5分)用适当的方法解下列方程:
(1)x2-5x-6=0; (2)4x(2x-1)=3(1-2x).
21.(本题6分)
(1)若五个数据2,-1 ,3 , ,5的极差为8,求 的值;
(2)已知六个数据-3,-2,1,3,6, 的平均数为1,求这组数据的方差.
22.(本题6分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;
(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是 下列图形中的哪一种?①平行四边形;②菱形;③矩形;
(2)请证明你的结论;
23.(本题8分)已知二次函数 的图象与x轴有两个交点.
(1)求k的取值范围;
(2)如果k取上面条件中的最大整数,且一元二次方程 与 有一个相同的根,求常数的值.
24.(本题8分)已知二次函数 的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)在如图所示的直角坐标系中画出C1的大致图象。
(3)将C1向下平移若干个单位后,得抛物线C2,
如果C2与x轴的一个交点为A(-3, 0), 求C2的
函数关系式,并求C2与x轴的另一个交点坐标;
(4)若
求实数n的取值范围.
25.(本题7分)如图,A、B是 上的两点, ,点D为劣弧 的中点.
(1)求证:四边形AOBD是菱形;
(2)延长线段BO至点P,使OP=2OB,OP交 于另一点C,
且连结AC。求证:AP是 的切线.
26.(本题7分)木工师傅可以用角尺测量并计算出圆的半径r. 用角尺的较短边紧靠 ,角尺的顶点B(∠B=90),并使较长边与 相切于点C.
(1)如图,AB<r,较短边AB=8c,读得BC长为12c,则该圆的半径r为多少?
(2)如果AB=8c,假设角尺的边BC足够长,若读得BC长
为ac,则用含a的代数式表示r为 ▲ .
27.(本题8分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售. 若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y = x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为W内(元)(利润=销售额-成本-广告费).
若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常,10≤a≤40),当月销量为x(件)时,每月还需缴纳 x2元的附加费,设月利润为W外(元)(利润=销售额-成本-附加费).
(1)若只在国内销售,当x=1000时,y= ▲ 元/件;
(2)分别求出W内,W外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
(4)当a取(3)中的值时,如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
28.(本题11分)如图,已知抛物线 与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;
⑶点E为y轴上一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点
P在第三象限.
①当线段PQ= AB时,求CE的长;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
九年级数学期末试卷参考答案
一、题(每题2分)
1、x≥2 2、2 3、4 4、(5,3) 5、6 6、6 7、10 8、16 9、 10、50度 11、x=2 12、 或 (写对一点给1分)
二、(每小题3分,共15分)
13、C 14、C 15、B 16、D 17、B
三、解答题
18、原式= (3分,化对一个给1分)
=9 (5分)
19、原式= (化对第一个给2分)= (5分)
20、(1) (5分)(对一个给2分,结合学生选择的解法,分步给分)
(2) (对一个给2分,结合学生选择的解法,分步给分)
21、解:(1)∵-1,2 ,3 ,5的极差为6∴ <-1,或 >5(1分)
∴5 =8或 (-1)=8 ∴ =-3 或 =7 3分(对一个给2分)
(2) =1 (4分) (6分)
22、解:D①平行四边形(2分)(2)证明:证出Rt△ABF≌ Rt△CDE (3分)得到AF=CE (4分) ∵AF∥CE (5分) ∴四边形AFCE为平行四边形(6分)
23、(1)∵ (2分) ∴k<9 (3分)
(2) ∵k是上面符合条件的最大整数 ∴k=8 (4分)
当k=8时,方程x2-6x+8=0的根为x1=2 x2=4; (6分)
把x=2代入方程x2+x-4=0得4+2-4=0 ∴= 0 (7分)
把x=4代入方程x2+x-4=0得16+4-4=0 ∴= -3(8分)
24、(1) (1分)
轴有且只有一个公共点,∴顶点的纵坐标为0.∴C1的顶点坐标为(—1,0)(2分)
(2)画图,大致准确(4分)
(3)设C2的函数关系式为 把A(—3,0)代入上式得 ∴C2的函数关系式为 (5分)∵抛物线的对称轴为 轴的一个交点为A(—3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0). (6分)(4)n>1或n<-3(8分,写出一个给一分)
25、解:证明:(1)连接OD.
是劣弧 的中点,
(1分)又∵OA=OD,OD=OB
∴△AOD和△DOB都是等边三角形(2分) ∴ AD=AO=OB=BD ∴四边形AOBD是菱形(3分)
(2)∵OP=2OB,OA=OC=OB ∴PC=OC=OA(4分) 为等边三角形(5分)
∴PC=AC=OC∴∠CAP=∠CPA 又∠ACO=∠CPA+∠CAP
(6分)又 是半径 是 的切线(7分)
26、解:(1)连结OC、OA,作AD⊥OC,垂足为D。则OD=r-8(1分) 在Rt△AOD中,r2=(r-8)2+122
(3分) r=13(4分)
(2)当 ,当 (7分,对一个给2分)
27、解:(1)140 (2分)
(2)w内 = x(y -20)- 62500 = x2+130 x ,(3分)
w外 = x2+(150 )x.(4分)
(3)当x = = 6500时,w内最大;(5分)
由题意得 ,(6分)
解得a1 = 30,a2 = 270(不合题意,舍去).所以 a = 30.(7分)
(4)当x = 5000时,w内 = 337500, w外 = .选择在国外销售才能使所获月利润较大(8分)
28.⑴∵抛物线的对称轴为直线x=1,∴ ∴b=-2.(1分)
∵抛物线与y轴交于点C(0,-3),∴c=-3,(2分)∴抛物线的函数表达式为y=x2-2x-3.
⑵∵抛物线与x轴交于A、B两点,当y=0时,x2-2x-3=0.
∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)(3分)
设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+,
则 ,(4分)∴ ∴直线BC的函数表达式为y=x-3.(5分)
⑶①∵AB=4,PO= AB,∴PO=3(6分)∵PO⊥y轴
∴PO∥x轴,则由抛物线的对称性可得点P的横坐标为 ,
∴P( , )(7分)∴F(0, ),
∴FC=3-OF=3- = .∵PO垂直平分CE于点F,
∴CE=2FC= (8分)
②P1(1- ,-2),P2(1- , ).(11分,写对一个给1分)