逍遥学能 2016-01-12 10:03
极坐标系的定义:
在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个长度单位,通常规定角度取逆时针方向为正。这样就建立了一个极坐标系。这样,平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
点的极坐标:
设M点是平面内任意一点,用ρ表示线段OM的长度,θ表示射线Ox到OM的角度,那么ρ叫做M点的极径,θ叫做M点的极角,有序数对(ρ,θ)叫做M点的极坐标,如图,
极坐标系的四要素:
极点,极轴,长度单位,角度单位和它的正方向.极坐标系的四要素,缺一不可.
极坐标系的特别注意:
①关于θ和ρ的正负:极角θ的始边是极轴,取逆时针方向为正,顺时针方向为负,θ的值一般以弧度为单位。
极坐标和直角坐标的互化:
(1)互化的前提条件
①极坐标系中的极点与直角坐标系中的原点重合;
②极轴与x轴的正半轴重合;
③两种坐标系中取相同的长度单位.
(2)互化公式
特别提醒:①直角坐标化为极坐标用第二组公式.通常取所在的象限取最小正角;
②当
③直角坐标方程及极坐标方程互化时,要切实注意互化前后方程的等价性.
④若极点与坐标原点不是同一个点.如图,设M点在以O为原点的直角坐标系中的坐标为(x,y),在以为原点也是极点的时候的直角坐标为(x′,y′),极坐标为(ρ,θ),则有
第一组公式用于极坐标化直角坐标;第二组公式用于直角坐标化极坐标.