三角函数万能公式

逍遥学能  2015-02-16 12:55

  【—三角函数万能公式】对于三角函数万能公式的知识内容学习,希望同学们都能很好的掌握下面讲解的内容。

  万能公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  三角函数万能公式为什么万能

  万能公式为:

  设tan(A/2)=t

  sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)

  tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)

  cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)

  就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

  以上对三角函数万能公式内容知识的讲解学习,相信可以很好的帮助同学们对此类型题目的解答吧,希望同学们会做的更好。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:初中数学知识点汇编之一元一次方程
下一篇:初中数学圆周角定理知识点总结

逍遥学能在线培训课程推荐

【三角函数万能公式】相关文章
【三角函数万能公式】推荐文章