初中数学知识点总结:有理数的相关概念
逍遥学能 2014-10-16 12:35
点总结
有理数的概念的内容包含有理数分类的原则和,相反数、数轴、绝对值的概念和特点。
1.有理数的分类:有理数包括整数和分数,整数又包括正整数,0和负整数,分数包括正分数和负分数 。“分类”的原则:(1)相称(不重、不漏);(2)有标准
2.非负数:正数与零的统称。
3.相反数: (1)定义:如果两个数的和为0.那么这两个数互为相反数.
(2)求相反数的公式: a的相反数为-a.
(3)性质:①a≠0时,a≠-a;②a与-a在数轴上的位置关于原点对称;③两个相反数的和为0,商为-1。
4.数轴:
(1)定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴。
作用:①直观地比较实数的大小;②明确体现绝对值意义;③所有的有理数可以在数轴上表示出来,所有的无理数如 都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。
5.绝对值:(1)代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。
(2)几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
①符号"││”是“非负数”的标志;
②数a的绝对值只有一个;
③处理任何类型的题目,只要其中有"││”出现,其关键一步是去掉"││”符号。
常见考法
绝对值、相反数、数轴的概念难度不大,但极易混淆。在段考和中都是重点,题型多以填空、选择为主。有时也和定义新运算这类题目联系起来考查。
误区提醒
【例】(2009山西省太原市)在数轴上表示-2的点离开原点的距离等于( )
A.2 B.-2 C. 0 D.4
【解析】本题考查数轴的有关知识,也是考查绝对值的几何意义,数轴上表示-2的点离开原点的距离等于2,故选A。混淆了绝对值、相反数、数轴三者的概念,是的常见错误。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。