逍遥学能 2014-05-24 11:03
【—矩形】矩形要领:矩形所在平面内任一点到其两对角线端点的距离的平方和相等。
矩形的实际应用
例1:已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB= 4 cm.求这个平行四边形的面积。
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形(如图个4-37),再利用勾股定理计算边长,从而得到面积为
例2:已知:ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形 ABCD是矩形.
分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。
例:3:已知:ABCD的四个内角平分线相交于点E,F,G,H.求证:EG=FH.
分析:要证的EG,FH为四边形EFGH的对角线,因此只需证明四边形EFGH为矩形,而题目可分解出基本图形:如图4-39(b),因此,可选用“三个角是直角的四边形是矩形”来证明.
例4:已知:在△ABC中,∠C= 90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.
知识总结:矩形具有平行四边形的所有性质。