逍遥学能 2014-05-20 09:52
斐波那契是欧洲中世纪颇具影响的数学家,公元1170年生于意大利的比萨,早年曾就读于阿尔及尔东部的小港布日,后来又以商人的身份游历了埃及、希腊、叙利亚等地,掌握了当时较为先进的阿拉伯算术、代数和古希腊的数学成果,经过整理研究和发展之后,把它们介绍到欧洲。
公元1202年,斐波那契的传世之作《算法之术》出版。在这部名著中,斐波那契提出了以下饶有趣味的问题:
假定一对刚出生的小兔一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。问一对刚出生的兔子,一年内能繁殖成多少对兔子?
图 1
逐月推算,我们可以得到数列:
1,1,2,3,5,8,13,21,34,55,89,144,233。这个数列后来便以斐波那契的名字命名。数列中的每一项,则称为“斐波那契数”。第十三位的斐波那契数,即为一对刚出生的小兔,一年内所能繁殖成的兔子的对数。这个数字等于233。
从斐波那契数的构造明显看出:斐被那契数列从第三项起,每项都等于前面两项的和。假定第n项斐波那契数为,于是我们有:
通过以上关系式,我们可以一步一个脚印地算出任意,不过,当n很大时,推算是很费事的。我们必须找到更为科学的计算方法。
为此,我们在以下一列数
中去导求满足关系式
的解答。
解上述q的一元二次方程得:
。
据此,设,并结合,可确定α,β,从而可以求出:
以上公式是法国数学家比内首先求得的,通称比内公式。令人惊奇的是,比内公式中的是用无理数的幂表示的,然而它所得的结果却是整数。读者不信,可以找几个n的值代进去试试看!
斐波那契数列有许多奇妙的性质,其中有一个性质是这样的:
有兴趣的读者,不难自行证明上述等式。
斐波那契数列的上述性质,常被用来构造一些极为有趣的智力游戏。例如,美国《科学美国人》杂志就曾刊载过一则故事:
一位魔术师拿着一块边长为8英尺的正方形地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯。”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!这真是不可思议的事!亲爱的读者,你猜得到那神奇的一 平方英尺究竟跑到哪儿去呢?
斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔(如图4),例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。
图4