逍遥学能 2014-04-22 11:42
【—正弦函数公式】正弦函数是三角函数的一种,也是我们最常遇见的三角函数之一。
正弦函数
锐角正弦函数的定义
在直角三角形ABC中 初中地理,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b
正弦函数就是sin A=a/c,即sin A=BC/AB.
定义与定理
定义:对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sin x,这样,对于任意一个实数x都有唯一确定的值sin x与它对应,按照这个对应法则所建立的函数,表示为y=sin x,叫做正弦函数。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a/sin A=b/sin B=c/sin C
在直角三角形ABC中,∠C=90°,y为一条直角边,r为斜边,x为另一条直角边(在坐标系中,以此为底),则sin A=y/r,r=√(x^2+y^2)
性质图像
图像是波形图像(由单位圆投影到坐标系得出), 叫做正弦曲线(sine curve)
定义域
实数集R
值域
[-1,1] (正弦函数有界性的体现)
最值和零点
①最大值:当x=2kπ+(π/2) ,k∈Z时,y(max)=1
②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1
零值点:(kπ,0) ,k∈Z
对称性
既是轴对称图形,又是中心对称图形。
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称
2)中心对称:关于点(kπ,0),k∈Z对称
周期性
最小正周期:y=Asin(ωx+φ) T=2π/ω
奇偶性
奇函数 (其图象关于原点对称)
单调性
在[-π/2+2kπ,π/2+2kπ],k∈Z上是单调递增.
在[π/2+2kπ,3π/2+2kπ],k∈Z上是单调递减.
正弦型函数及其性质 正弦型函数解析式:y=Asin(ωx+φ)+h
各常数值对函数图像的影响:
φ(初相位):决定波形与X轴位置关系或横向移动距离(左加右减)
ω:决定周期(最小正周期T=2π/ω)
A:决定峰值(即纵向拉伸压缩的倍数)
h:表示波形在Y轴的位置关系或纵向移动距离(上加下减)
作图方法运用“五点法”作图
“五点作图法”即取ωx+θ当分别取0,π/2,π,3π/2,2π时y的值.
单位圆定义
图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同 x轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 y坐标等于 sin θ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度 1,所以有了 sin θ = y/1。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于 1 查看无限数目的三角形的一种方式。即sin θ=AB,与y轴正方向一样时正,否则为负
对于大于 2π 或小于 0 的角度,简单的继续绕单位圆旋转。在这种方式下,正弦变成了周期为 2π的周期函数。
正弦函数的三角形应用知识经常会出现在圆的有关中,大家答题时要注意审题了。