逍遥学能 2017-11-27 19:40
平面的法向量:
如果表示向量的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作⊥α,如果⊥α,那么向量叫做平面α的法向量。
法向量的特点:
1.法向量一定是非零向量;
2.一个平面的所有法向量都互相平行;
3.向量是平面的法向量,向量是与平面平行或在平面内,则有。
4.已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量,一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量.
一般地,由直线、平面的位置关系以及直线的方向向量和平面的法向量,可归纳出如下结论:
点P的位置向量:
在空间中,我们取一定点O作为基点,那么空间中任意一点P的位置就可以用向量OP老表示,我们把向量OP成为点P的位置向量。
直线的方向向量的定义:
(1)空间中任意一条直线l的位置可由l上一个定点A以及一个定方向确定。直线l上的向量以及与共线的向量叫做直线l的方向向量。
对于直线l上的任意一点P,存在实数t使得(如图所示)。
(2)由于垂直于同一平面的直线是互相平行的,所以,可以用垂直于平面的直线的方向向量来刻画平面的“方向”。