逍遥学能 2017-09-19 19:28
参考公式:一、填空题:本大题共14个小题,每小题5分,共70分)1.过点和的直线的斜率为 .2.已知直线平面,直线平面,则直线的位置关系是 .3.两个平面能把空间分成个部分在直角坐标系中,直线的倾斜角【解析】试题分析:根据直线方程知道直线的倾斜角下四个条件中,能确定一个平面的空间中三点 空间中两条直线一条直线和一个点 两条平行直线的半径为,则球的表面积为___ __.7.如图,在正方体中,分别为棱的中点,给出下列对线段所在直线:①与;②与;③与.其中,是异面直线的对数共有 对.【答案】【解析】试题分析:有异面直线的定义可知,异面直线的只有②与;③与两组.考点:异面直线的概念.8.如果,那么直线不通过第 象限.9.已知则过点的直线的斜率为 .10.10.如图,在边长为的正方体中,是棱上一点,是棱上一点,则三棱锥的体积是 .11.用半径为的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为.12.过点,在两坐标轴上的截距互为相反数的直线方程中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则 .14.已知是三条不同的直线是三个不同的平面,下列命题:①若,,则; ②若,,则;③若,,,则;④若,则其中真命题是(写出所有真命题的序号).二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.在平面直角坐标系中,已知直线的斜率为.(Ⅰ)若直线过点,求直线的方程;(Ⅱ)若直线在轴、轴上的截距之和为,求直线的方程.16.如图,在四棱锥中,底面是矩形,四条侧棱长均相等且交于点.(Ⅰ)求证:;(Ⅱ)求证:.17.在如图所示的多面体中,,.(Ⅰ)求证:;(Ⅱ)求证:. 【答案】证明过程详见试题解析.18.在三棱锥中,且.(Ⅰ)求证:;(Ⅱ)求三棱锥的体积.19.已知直线:(Ⅰ)求证:不论实数取何值,直线总经过一定点.(Ⅱ)若直线与两坐标轴的正半轴围成的三角形面积最大,求的方程.20.如图:长方形所在平面与正所在平面互相垂直,分别为的中点.(Ⅰ)求证:平面;(Ⅱ)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点 的位置,并证明你的结论;若不存在,请说明理由. 每天发布最有价值的高考资源 每天发布最有价值的高考资源 1 1 每天发布最有价值的(第10题)图)(第17题图)江苏省淮安市范集中学高二上学期期中考试试题(数学)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。