高中数学知识点:回归分析的基本思想及其初步应用

逍遥学能  2017-08-12 15:27

相关系数:



当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关;|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小。


残差:
相关指数R2用来刻画回归的效果,其计算公式是
在含有一个解释变量的线性模型中,R2恰好等于相关系数r的平方。显然,R2取值越大,意味着残差平方和越小,也就是模型的拟合效果越好。



建立回归模型的基本步骤:


(1)确定研究对象,明确哪个变量是解释变量,哪个是预报变量;
(2)画出解释变量和预报变量的散点图,观察它们之间的关系;
(3)由经验确定回归方程的类型(如观察到数据呈线性关系,则选用线性回归方程);
(4)按一定规则估计回归方程中的参数(如最小二乘法);
(5)得出结果分析残差图是否有异常,若存在异常,则检查数据是否有误,或模型是否适当。当回归方程不是形如时,我们称之为非线性回归方程。



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:让思想教育融入数学教学
下一篇:高考数学总复习:怎样处理非常规题目

逍遥学能在线培训课程推荐

【高中数学知识点:回归分析的基本思想及其初步应用】相关文章
【高中数学知识点:回归分析的基本思想及其初步应用】推荐文章