高中数学知识点:直线的方程

逍遥学能  2017-05-28 12:35

直线方程的定义:


以一个方程的解为坐标的点都是某条直线上的点,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线。


基本的思想和方法:


求直线方程是解析几何常见的问题之一,恰当选择方程的形式是每一步,然后?用待定系数法确定方程,在求直线方程时,要注意斜率是否存在,利用截距式时,不能忽视截距为0的情形,同时要区分“截距”和“距离”。


直线方程的几种形式:


1.点斜式方程:
(1),(直线l过点,且斜率为k)。
(2)当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示,但因l上每一点的横坐标都等于x1,所以它的方程是x=x1
2.斜截式方程:已知直线在y轴上的截距为b和斜率k,则直线的方程为:y=kx+b,它不包括垂直于x轴的直线。
3.两点式方程:已知直线经过(x1,y1),(x2,y2)两点,则直线方程为:
4.截距式方程:已知直线在x轴和y轴上的截距为a,b,则直线方程为:(a、b≠0)。
5.一般式方程:(1)定义:任何直线均可写成:Ax+By+C=0(A,B不同时为0)的形式。(2)特殊的方程如:平行于x轴的直线:y=b(b为常数);平行于y轴的直线:x=a(a为常数)。



几种特殊位置的直线方程:




求直线方程的一般方法:

(1)直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法,一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.
(2)待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.
利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定点,可以利用直线的点斜式求方程,也可以利用斜截式、截距式等形式求解.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:数学有效教学设计的实践与反思
下一篇:在中学教学中应用数学美

逍遥学能在线培训课程推荐

【高中数学知识点:直线的方程】相关文章
【高中数学知识点:直线的方程】推荐文章