高中数学知识点:双曲线的性质(顶点、范围、对称性、离心率)
逍遥学能 2017-04-17 10:32
双曲线的离心率的定义:
(1)定义:双曲线的焦距与实轴长的比叫做双曲线的离心率.
(2)e的范围:e>l.
(3)e的含义:e是表示双曲线开口大小的一个量,e越大开口越大.
渐近线与实轴的夹角也增大。
双曲线的性质:
1、焦点在x轴上:顶点:(a,0),(-a,0);焦点:(c,0),(-c,0);
渐近线方程:或。
2、焦点在y轴上:顶点:(0,-a),(0,a);焦点:(0,c),(0,-c);
渐近线方程:或。
3、轴:x、y为对称轴,实轴长为2a,虚轴长为2b,焦距2c。
4、离心率;
5、中,取值范围:x≤-a或x≥a,y∈R,对称轴是坐标轴,对称中心是原点。
双曲线的焦半径:
双曲线上的点之间的线段长度称作焦半径,分别记作
关于双曲线的几个重要结论:(1)弦长公式(与椭圆弦长公式相同).
(2)焦点三角形:已知
的两个焦点,P为双曲线上一点(异于顶点),
的面积为
在解决与焦点三角形有关的问题时,应注意双曲线的两个定义、焦半径公式以及三角形的边角关系、正弦定理等知识的综合运用,还应注意灵活地运用平面几何、三角函数等知识来分析解决问题.
(3)基础三角形:如图所示,△AOB中,
(4)双曲线的一个焦点到一条渐近线的距离等于虚半轴长.
(5)自双曲线的焦点作渐近线的垂线,垂足必在相应的准线上,即过焦点所作的渐近线的垂线,渐近线及相应准线三线共点.
(6)以双曲线的焦半径为直径的圆与以实轴为直径的圆外切或内切.
(7)双曲线
上一点P(x
0,y
0)处的切线方程是
(8)双曲线划分平面区域:对于双曲线
,我们有:P(x
0,y
0)在双曲线内部(与焦点共区域)
P(x
0,y
0)在双曲线外部(与焦点不其区域)
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。