高中数学对称问题分类探析

逍遥学能  2013-08-17 15:57

  对称问题是的重要内容之一,在中常出现一些构思新颖解法灵活的对称问题,为使对称问题的系统化,本文特作以下归纳。

  一、点关于已知点或已知直线对称点问题

  1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),

  x′=2a-x

  由中点坐标公式可得:y′=2b-y

  2、点P(x,y)关于直线L:Ax+By+C=O的对称点为

  x′=x-(Ax+By+C)

  P′(x′,y′)则

  y′=y-(AX+BY+C)

  事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C

  解此方程组可得结论。

  (- )=-1(B≠0)

  特别地,点P(x,y)关于

  1、x轴和y轴的对称点分别为(x,-y)和(-x,y)

  2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)

  3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)

  例1 光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。

  解:如图,由公式可求得A关于直线x-2y=0的对称点

  A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0

  `C(0, )

  `直线BC的方程为:5x-6y+25=0


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高三数学复习计划
下一篇:高中数学加分的五大技巧

逍遥学能在线培训课程推荐

【高中数学对称问题分类探析】相关文章
【高中数学对称问题分类探析】推荐文章