理发师悖论

逍遥学能  2013-06-21 18:06

M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:

  告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
  

  M:谁给这位理发师刮脸呢?

  M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
  

  M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!
  

  伯特纳德·罗素提出这个悖论,为的是把他发现的关于集合的一个著名悖论用故事通俗地表述出来。某些集合看起来是它自己的元素。例如,所有不是苹果的东西的集合、它本身就不是苹果,所以它必然是此集合自身的元素。现在来考虑一个由一切不是它本身的元案的集合组成的集合。这个集合是它本身的元素吗?无论你作何回答,你都自相矛盾[*]。

  在逻辑学上最富戏剧性的危机之一就与这条逆论有关。德国的著名逻辑学家哥特洛伯·弗里兹写完了他最重要的著作《算法基础》第二卷,他认为他在这本书中确立了一套严密的集合论,它可作为整个的基础。1902年,当该书付印时,他收到了罗索的信,他得知上面那条悖论。弗里兹的集合论容许由一切不是它自身的元素的集合构成的集合。正如罗素在信中澄清的,这个表面上结构完美的集合却是自相矛盾的。弗里兹在收到罗素的信后,只来得及插入一个简短的附言:

  “一个科学家所遇到的最不合心意的事,莫过于是在他的即将结束时使其基础崩溃了,我把罗素的来信发表如下……”

  据说,弗里兹使用的词“不合心意”(undesirable)是数学史上最词不达意的说法了。

  --------------------------------------------------------------------------------

  [*] 设对于一类集合,A1={a11, a12, … a1i …},A2={a21, a22, … a2i …},……,Ai={ai1, ai2, … aij …}都满足条件aijAi (i=1, 2, … j=1, 2, …)但AiAi一切这类集合物成新集合A={A1, A2, … Ai, …) AiA,问AA?如果认为AA,则A应该不是自身集合的元素,即AA,如果AA,A就应是本集合的元素,即AA,岂非矛盾——译注



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:平面向量、平面向量的坐标运算
下一篇:如何听数学课

逍遥学能在线培训课程推荐

【理发师悖论】相关文章
【理发师悖论】推荐文章