逍遥学能 2013-01-27 17:55
沧州市颐和中学导学案
学科高中物理
题带电粒子在匀强磁场中的运动型
1.洛伦兹力演示仪
构造:玻璃泡内充有稀薄气体,在电子束通过时能够显示电子的径迹。砺磁线圈产生匀强磁场,
实验:根据洛伦兹力的知识预测电子束的径迹,然后观察实验。
洛伦兹力总与速度垂直,不改变速度大小,洛伦兹力大小不变。猜想:匀速圆周运动。
⑴不加磁场时观察电子束的径迹
⑵给砺磁线圈通电,在玻璃泡中产生沿两线圈中心连线方向的匀强磁场
⑶保持出射电子的速度不变,改变磁感应强度,观察电子束径迹的变化
⑷保持磁感应强度不变,改变出射电子的速度,观察电子束径迹的变化
实验结论:沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
2.带电粒子在磁场中做匀速圆周运动的半径和周期[高考资网S5U]
带电粒子的受力及运动分析
带电粒子垂直进入匀强磁场中的受力情况分析。
带电粒子受的洛伦兹力方向不断变化,但始终与v垂直,洛伦兹力的大小不变。
运动分析
没有力作用使电子离开与磁场方向垂直的平面。也没有垂直于磁场方向以外的速度分量使电子离开与磁场方向垂直的平面。所以电子的运动轨迹平面与磁场方向垂直。
洛伦兹力只改变速度的方向,不改变速度的大小,提供带电粒子做匀速园周运动的向心力。
结论:带电粒子垂直进入匀强磁场中,粒子在洛伦兹力的作用下,在垂直于磁场方向的平面内做匀速圆周运动。
轨道半径和周期
(1)轨道半径公式
一带电粒子的质量为m,电荷量为q,速度为v,带电粒子垂直进入磁感应强度为B的匀强磁场中,其半径r和周期T为多大?
核心关系:洛伦兹力给带电粒子做圆周运动提供向心力。
F=mv2r
粒子做匀速圆周运动所需的向心力是由粒子所受的洛伦兹力提供的,所以
qvB=mv2r
由此得出
r=mvqB
上式告诉我们,在匀强磁场中做匀速园周运动的带电粒子,它的轨道半径跟粒子的运动速率成正比。运动的速度越大,轨道的半径也越大。
(2)周期公式
将半径r代入周期公式T=2πrv中,得到
T=2πmqB
带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。
【例题1】 、 、 它们以下列情况垂直进入同一匀强磁场,求轨道半径之比,周期之比。
①具有相同速度;
②具有相同动量;ks5u
③具有相同动能。
解答:依据qvB=mv2r,得r=mvqB
①v、B相同,所以r∝mq,所以r1∶r2∶r3=1∶2∶2
②因为mv、B相同,所以r∝1q,r1∶r2∶r3=2∶2∶1
③12mv2相同,v∝1m,B相同,所以r∝mq,所以r1∶r2∶r3=1∶2∶1
4、质谱议
(1)质谱仪的结构
质谱仪由粒子、加速电场、偏转磁场、显示屏等组成。
(2)质谱仪的工作原理
r和进入磁场的速度无关,进入同一磁场时, ,而且这些个量中,U、B、r可以直接测量,那么,我们可以用装置测量粒子的比荷q/m。
质子数相同而质量数不同的原子互称为同位素。在上图中,如果容器A中含有电荷量相同而质量有微小差别的粒子,根据例题中的结果可知,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线。每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量。这种仪器叫做质谱议。
(3)质谱仪的应用
质谱仪最初是由汤姆生的学生阿斯顿设计的,他用质谱仪首先得到了氖20和氖22的质谱线,证实了同位素的存在。后经过多次改进,质谱仪已经成了一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具。
【例题2】如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场。然后让粒子垂直进入磁感应强度为B的磁场中做匀速圆周运动,最后打到照相底片D上,如图所示。求
①粒子进入磁场时的速率;
②粒子在磁场中运动的轨道半径。
解答:①粒子在S1区做初速度为零的匀加速直线运动。在S2区做匀速直线运动,在S3区做匀速圆周运动。
由动能定理可知
12mv2=qU
由此可解出
v=2qUm
②粒子在磁场中做匀速圆周运动的轨道半径为
r=mvqB=2mUqB2
巩固练习