等比数列求和公式
逍遥学能 2016-04-01 17:00
等比数列这个名词是我们在数学中经常会用到的一个名词,我们在初中的时候就开始学习等比数列,但是在升入高中以后可能还是对这一个难题束手无策,在这里,小编就要教教大家如何用等比数列求和,攻克这一个数学难题!
一.等比数列求和的教学基础
1.知识结构
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前n项.
2.重点、难点分析
教学重点、难点是等比数列前 项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前n项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前n项和公式是分情况讨论的,在运用中要特别注意 q=1和q=\\1两种情况.
3.学习建议
①本节内容分为两课时,一节为等比数列前 项和公式的推导与应用,一节为通项公式与前 项和公式的综合运用,另外应补充一节数列求和问题.
②等比数列前n项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论
③等比数列前n项和公式的推导的其他方法可以给出,提高学生学习的兴趣
④编拟例题时要全面,不要忽略 的情况.
⑤通项公式与前n项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大
⑥补充可以化为等差数列、等比数列的数列求和问题.
二、等比数列求和公式
一个数列,如果任意的后一项与前一项的比值是同一个常数,且数列中任何项都不为0,
即:A(n+1)/A(n)=q (n∈N*), 这个数列叫等比数列,其中常数q 叫作公比。
如: 2、4、8、16......2^10 就是一个等比数列,其公比为2, 可写为 an=2×2^(n-1) 通项公式 an=a1×q^(n-1);
1.通项公式与推广式
推广式:an=am×q^(n-m) [^的意思为q的(n-m)次方];
2.求和公式
Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1) S∞=a1/(1-q) (n-> ∞)(|q|<1) (q为公比,n为项数)
3.等比数列求和公式推导
①Sn=a1+a2+a3+...+an(公比为q)
②q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1)
③Sn-q*Sn=a1-a(n+1)
④(1-q)Sn=a1-a1*q^n
⑤Sn=(a1-a1*q^n)/(1-q)
⑥Sn=(a1-an*q)/(1-q)
⑦Sn=a1(1-q^n)/(1-q)
4、性质 简介
①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每 k项之和仍成等比数列; 等比数列的性质
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;
④ 若G是a、b的等比中项,则G^2=ab(G ≠ 0);
⑤在等比数列中,首项a1与公比q都不为零
三.学习等比数列的方法
1知识与技能目标
理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题.
2.过程与方法目标
通过对公式的研究过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.
3.情感、态度与价值目标
通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,并从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.
4..教学重点、难点
①重点:等比数列前n项和公式的推导及公式的简单应用. 突出重点的方法:“抓三线、突重点”,即一是知识技能线:问题情境→公 式推导→公式运用;二是过程方法线:从特殊、归纳猜想到一般→错位相减法→数学思想;三是能力线:观察能力→初步解决问题能力
.②难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.
学习等比数列其实也就是这么简单,要把握好他的重点和难点,学会运用平时在课堂上所学习的知识点,再加上多做些题,熟练地记住等比数列的求和公式,通过多做题再来一遍一遍的回顾这些知识点,小编相信,学习等比数列对你来说将不再是难事!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。