逍遥学能 2016-02-06 10:27
证明思路:
该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点
法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。
AM=DP,AN=DQ
AB=AM/cosA,AC=AN/cosA,∴AB/AC=AM/AN
DE=DP/cosD,DF=DQ/cosD,∴DE/DF=DP/DQ
又∵AM=DP,AN=DQ,∴AB/AC=DE/DF
根据比例的性质:
AB/(AC-AB)=DE/(DF-DE)
∴AB/BC=DE/EF
法2:过A点作AN∥DF交BE于M点,交CF于N点,则AM=DE,MN=EF.
∵ BE∥CF
∴△ABM∽△ACN.
∴AB/AC=AM/AN
∴AB/(AC-AB)=AM/(AN-AM)
∴AB/BC=DE/EF
法3:连结AE、BD、BF、CE
根据平行线的性质可得S△ABE=S△DBE, S△BCE=S△BEF
∴S△ABE/S△CBE=S△DBE/S△BFE
根据不同底等高三角形面积比等于底的比可得:
AB/BC=DE/EF
由更比性质、等比性质得:
AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF