高中数学知识点:全称量词与存在性量词

逍遥学能  2016-01-05 10:26

1、全称量词与全称命题:
①全称量词:短语“对所有的”,“对任意的”在陈述中表示整体或全部的含义,逻辑中通常叫做全称量词,并用符号“”表示;
②全称命题:含有全称量词的命题,叫做全称命题
③全称命题的格式:“对M中任意一个x,有p(x)成立”的命题,记为?x∈M,p(x),读作“对任意x属于M,有p(x)成立”。
2、存在量词与特称命题:
①存在量词:短语“存在一个”,“至少有一个”在陈述中表示个别或者一部分的含义,在逻辑中通常叫做存在量词,并用符号“”表示。
②特称命题:含有存在量词的命题,叫做特称命题;
③“存在M中的一个x0,使p(x0)成立”的命题,记为?x0∈M,p(x0),读作“存在一个x0属于M,使p(x0)成立”。
3、全称命题的否定:
一般地,对于含有一个量词的全称命题的否定,有下面的结论:
全称命题p:,它的否命题
4、特称命题的否定:
一般地,对于含有一个量词的特称命题的否定,有下面的结论:
特称命题p:,其否定命题

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:数学课堂教学改革的几点做法
下一篇:数学教学中如何发挥学生主体性

逍遥学能在线培训课程推荐

【高中数学知识点:全称量词与存在性量词】相关文章
【高中数学知识点:全称量词与存在性量词】推荐文章