高中数学知识点:二面角

逍遥学能  2015-12-20 10:26

半平面的定义:


一条直线把平面分成两个部分,每一部分都叫做半平面.


二面角的定义:


从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。


二面角的平面角:


以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。 一个平面角的大小可用它的平面的大小来衡量,二面角的平面角是多少度,就说这个二面角是多少度。二面角大小的取值范围是[0,180°]。


直二面角:


平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角。



二面角的平面角具有下列性质:


a.二面角的棱垂直于它的平面角所在的平面,即l⊥平面AOB.
b.从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.
c.二面角的平面角所在的平面与二面角的两个面都垂直,即平面AOB⊥α,平面AOB⊥α.



求二面角的方法:


(1)定义法:通过二面角的平面角来求;找出或作出二面角的平面角;证明其符合定义;通过解三角形,计算出二面角的平面角.上述过程可概括为一作(找)、二证、三计算”.
(2)三垂线法:已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其逆定理作出平面角.
(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直.
(4)射影法:利用面积射影定理求二面角的大小;其中S为二面角一个面内平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.
(5)向量法:设二面角的平面角为θ.
①如果那么
②设向量m、n分别为平面α和平面β的法向量是相等还是互补,根据具体图形判断。


对二面角定义的理解:


根据这个定义,两个平面相交成4个二面角,其中相对的两个二面角的大小相等,如果这4个二面角中有1个是直二面角,则这4个二面角都是直二面角,这时两个平面互相垂直.按照定义,欲证两个平面互相垂直,或者欲证某个二面角是直二面角,只需证明它的平面角是直角,两个平面相交,如果交成的二面角不是直二面角,那么必有一对锐二面角和一对钝二面角,今后,两个平面所成的角是指其中的一对锐二面角.并注意两个平面所成的角与二面角的区别.



版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:数学高分是怎样炼成的
下一篇:实例解析数学选择题十大解法

逍遥学能在线培训课程推荐

【高中数学知识点:二面角】相关文章
【高中数学知识点:二面角】推荐文章