初中数学不等式知识点总结

逍遥学能  2015-09-11 11:56

  【—不等式总结】知识要点:用不等号可以将两个解析式连接起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。

  不等式

  不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)

  “≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

  通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

  整式不等式

  是不等式两边都是整式 ( 未知数不在分母上 )

  一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式.如3-X>0

  同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式.

  不等式的最基本性质

  ①如果x>y,那么yy;(对称性)

  ②如果x>y,y>z;那么x>z;(传递性)

  ③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则)

  ④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  ⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  ⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

  ⑦如果x>y>0,m>n>0,那么xm>yn;

  ⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)[1]

  如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。

  解不等式的原理

  主要的有:

  ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

  ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)

  ③如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

  ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。

上一篇:初二数学的学习方法精选
下一篇:初中数学图形面积公式大全

逍遥学能在线培训课程推荐

【初中数学不等式知识点总结】相关文章
【初中数学不等式知识点总结】推荐文章