数学高分秘诀:训练数学思维变通性

逍遥学能  2015-03-30 09:42

【摘要】;良好的学习方法是通往成功的秘诀,各科的学习方法你都知道哪些呢?请看下面小编为您整理的“数学高分秘诀:训练数学思维变通性 ”,希望对你有所帮助。

一、变通性的概念

数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。数学高分秘诀——数学思维变通性训练如下:

(1)从题目角度出发,善于观察

心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。

任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。

从做题角度上看,就是一切从题目角度出发,题目让干什么,我们做什么。题目没有提到的,一概先不思考。只有从解题角度上,需要的知识点,题目没有提到的,我们才思考。

由此,我们可以看出,并不是题目难解,而是我们没有观察出题目的关联性。

(2)从条件入手,善于联想

联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

(3)善于将问题进行转化

数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。

思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。

综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。要想提高思维变通性,必须作相应的思维训练。

看到这里,我想,你就会有一个概念,数学是相通的,是可以将一个条件或结论转化为多种形式出现的,一旦你抓住了根本,就能马上做题。一旦没有抓住,而苦苦思索是必然的。

二、思维训练实例

(1) 观察能力的训练

虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。

思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。因此,平时应多注意数学公式、定理的运用练习。做题时不要盲目解题,以题目为主,不要看到题,就联想知识点,这种做题方式只适合简单题,而不适合大题。

(2) 联想能力的训练

思维障碍有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。

思路2:由于是选择题,题目只给了一个条件,并且显然必有一个结论是正确的,∠C是钝角,求的是tgA×tgB的值,不妨构造∠A=∠B=30°,∠C=120°,那么问题迎刃而解。这就是根据题目限定的范围,进行的联想。很多选择题,填空题,都可以这么联想。

(3) 问题转化的训练

我们所遇见的数学题大都是生疏的、复杂的。在解题时,不仅要先观察具体特征,联想有关知识,而且要将其转化成我们比较熟悉的,简单的问题来解。恰当的转化,往往使问题很快得到解决,所以,进行问题转化的训练是很必要的。

1 转化成容易解决的明显题目

思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。因此,多练习这种“翻译”,是提高转化能力的一种有效手段。

2 逆向思维的训练

逆向思维也称为必要性思维。不是按习惯思维方向进行思考,而是从其反方向进行思考的一种思维方式。当问题的正面考虑有阻碍时,应考虑问题的反面,从反面入手,使问题得到解决。

问题的思考角度为:要想得到这个结论,所需要的前提条件是?不断逆推,直到条件可以利用。

思路分析 反证法被誉为“数学家最精良的武器之一”,它也是中学数学常用的解题方法。当要证结论中有“至少”等字样,或以否定形式给出时,一般可考虑采用反证法。

解析:题目要证明至少有一个不小于1,那么我们不妨假定三者全部小于1,带入验证,发现结果不成立,从而肯定了“至少一个小于1”的结论。用必要性思维进行表达:至少有一个不小于1=如果全部小于1,则不成立。前面的全部例子都可以用必要性思维进行验证。

3 一题多解训练与一解多题训练

由于每个学生在观察时抓住问题的特点不同、运用的知识不同,因而,同一问题可能得到几种不同的解法,这就是“一题多解”。通过一题多解训练,可使学生认真观察、多方联想、恰当转化,提高数学思维的变通性。这类题型太多,我就不举例子。

在整理大量题的过程中,我们会发现,很多题型虽然考法不同,应用知识点不同,考察形式风马牛不相及,但是整体的思路非常趋于一致!那么这种思路就是“一解多题”的思路。其实一解多题并不神秘,相反非常简单。我们看前面的例题,第一道题求和的思路是,把结论换成熟悉的公式,即简化思想。或者用逆向思维,要想求得这个结论,必须得出什么条件……第二个例题求方程组的思路是,把方程组转化为我们所熟悉的一元二次方程,也是简化思想……再看后面的题,解题过程如果从正向角度而言,不外乎是简化,推导、应用知识点。如果从逆向思维来考虑,也是找到入手点,寻找问题成立或不成立的前提,然后转化条件……这就是一解多题的思想。当然,这里的“解”指的是思路,而不是固定的方法。如果抛却题目难度和知识点的差异,甚至解题的步骤都趋于一致。

【总结】:“数学高分秘诀:训练数学思维变通性 ”到这里就为您介绍完毕了,怎么样,看了之后是不是受益良多呢?想要了解更多高三备考指导,请继续关注高中频道。

更多精彩内容推荐:


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高考政治复习采用分析“关键词”方法
下一篇:备考必读:高考古代诗歌鉴赏题型设计及答题思路解析(6)

逍遥学能在线培训课程推荐

【数学高分秘诀:训练数学思维变通性】相关文章
【数学高分秘诀:训练数学思维变通性】推荐文章