逍遥学能 2014-12-16 21:00
【摘要】鉴于大家对十分关注,小编在此为大家整理了此文“高中数学公式:数学积化和差公式”,供大家参考!
本文题目:高中数学公式:数学积化和差公式
积化和差,指初等数学三角函数部分的一组恒等式。
公式
sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
证明
法1
积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。
即只需要把等式右边用两角和差公式拆开就能证明:
sinαsinβ=-1/2[-2sinαsinβ]
=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]
=-1/2[cos(α+β)-cos(α-β)]
其他的3个式子也是相同的证明方法。
(该证明法逆向推导可用于和差化积的计算,参见和差化积)
法2
根据欧拉公式,e^ix=cosx+isinx
令x=a+b
得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)
所以cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
记忆方法
积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。
【1】这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是
[-2,2],而积的值域确是[-1,1],因此除以2是必须的。
也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:
cos(α-β)-cos(α+β)
=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)
=2sinαsinβ
故最后需要除以2。
【总结】2013年为小编在此为您收集了此文章“高中数学公式:数学积化和差公式”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在学习愉快!
更多频道: