教案 极限与探索性问题
【命题趋向】
综观历届全国各套数学,我们发现对极限的考查有以下一些类型与特点:
1.数学归纳法
①客观性试题主要考查对数学归纳法的实质的理解,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用).
②解答题大多以考查数学归纳法内容为主,并涉及到函数、方程、数列、不等式等综合性的知识,在解题过程中通常用到等价转化,分类讨论等数学思想,是属于中高档难度的题目
③数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用数学归纳法的一种主要思想方法. 在由n=k时命题成立,证明n=k 1命题也成立时,要注意设法化去增加的项,通常要用到拆项、组合、添项、减项、分解、化简等技巧,这一点要高度注意.
2. 数列的极限
①客观性试题主要考查极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,直接运用四则运算法则求极限.
②解答题大多结合数列的计算求极限等,涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.
③数列与几何:由同样的方法得到非常有规律的同一类几何图形,通常相关几何量构成等比数列,这是一类新题型.
3.函数的极限
①此部分为新增内容,本章内容在高考中以填空题和解答题为主.应着重在概念的理解,通过考查函数在自变量的某一变化过程中,函数值的变化趋势,说出函数的极限.
②利用极限的运算法则求函数的极限进行简单的运算.
③利用两个重要极限求函数的极限.
④函数的连续性是新教材新增加的内容之一.它把的极限知识与知识紧密联在一起.在
高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点.
4.在一套高题中,极限一般分别有1个客观题或1个解答题,分值在5分-12分之间.
5.在高考试题中,极限题多以低档或中档题目为主,一般不会出现较难题,更不会出现难题,因而极限题是高考中的得分点.
6.注意掌握以下思想方法
① 极限思想:在变化中求不变,在运动中求静止的思想;
② 数形结合思想,如用导数的几何意义及用导数求单调性、极值等.
此类题大多以解答题的形式出现,这类题主要考查学生的综合应用,分析问题和学生解决问题的,对运算要求较高.
【考点透视】
1.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
2.了解数列极限和函数极限的概念.
3.掌握极限的四则运算法则;会求某些数列与函数的极限.
4.了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.
【例题解析】
考点1 数列的极限
1.数列极限的定义:一般地,如果当项数n无限增大时,无穷数列{an}的项an无限地趋近于某个常数a(即an-a无限地接近于0),那么就说数列{an}以a为极限.
注意:a不一定是{an}中的项.
2.几个常用的极限:① C=C(C为常数);② =0;③ qn=0(q<1).
3.数列极限的四则运算法则:设数列{an}、{bn},
当 an=a, bn=b时, (an±bn)=a±b;
例1. ( 2006年湖南卷)数列{ }满足: ,且对于任意的正整数m,n都有 ,则 ( )
A. B. C. D.2
[考查目的]本题考查无穷递缩等比数列求和公式和公式 的应用.
[解答过程]由 和 得
故选A.
例2.(2006年安徽卷)设常数 , 展开式中 的系数为 ,则 _____.
[考查目的]本题考查利用二项式定理求出关键数, 再求极限的能力.
[解答过程] ,由 ,所以 ,所以为1.
例3. (2007年福建卷理)把 展开成关于 的多项式,其各项系数和为 ,则 等于( ) ( )
A. B. C. D.2
[考查目的]本题考查无穷递缩等比数列求和公式和公式 的应用.
[解答过程]
故选D
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。