高中数学公式指导:立体几何学习中有哪些图形_高中数学公式

逍遥学能  2014-08-02 17:28

【编者按】立体几何的学习离不开图形,图形是一种语言,图形能帮我们直观地感受空间线面的位置关系,培养空间想象能力.所以在立体几何的学习中,我们要树立图形观,通过作图、读图、用图、造图、拼图、变图培养我们的思维能力.

一、作图

作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系.所以作图是解决立体几何问题的第一步,作好图有利于问题的解决.

例1 已知正方体

中,点P、E、F分别是棱AB、BC、

的中点(如图1).作出过点P、E、F三点的正方体的截面.

分析:作图是学生学习中的一个弱点,作多面体的截面又是作图中的难点.学生看到这样的题目不知所云.有的学生连结P、E、F得三角形以为就是所求的截面.其实,作截面就是找两个平面的交线,找交线只要找到交线上的两点即可.观察所给的条件(如图2),发现PE就是一条交线.又因为平面ABCD//平面

,由面面平行的性质可得,截面和面

的交线一定和PE平行.而F是

的中点,故取

的中点Q,则FQ也是一条交线.再延长FQ和

的延长线交于一点M,由公理3,点M在平面

和平面

的交线上,连PM交

于点K,则QK和KP又是两条交线.同理可以找到FR和RE两条交线(如图2).因此,六边形PERFQK就是所求的截面.

二、读图

图形中往往包含着深刻的意义,对图形理解的程度影响着我们的正确解题,所以读懂图形是解决问题的重要一环.

例2 如图3,在棱长为a的正方体

中,EF是棱AB上的一条线段,且EF=b


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高中数学解题思想方法全部内容
下一篇:如何提高高中数学的解题能力

逍遥学能在线培训课程推荐

【高中数学公式指导:立体几何学习中有哪些图形_高中数学公式】相关文章
【高中数学公式指导:立体几何学习中有哪些图形_高中数学公式】推荐文章