初中数学公约数的性质知识点结构

逍遥学能  2014-06-17 10:25

  【—公约数的性质】其实辗转相除法是用来求最大公约数的,我们用代数的形式来表达。

  性质

  重要性质:gcd(a,b)=gcd(b,a) (交换律)

  gcd(-a,b)=gcd(a,b)

  gcd(a,a)=a

  gcd(a,0)=a

  gcd(a,1)=1

  gcd(a,b)=gcd(b, a mod b)

  gcd(a,b)=gcd(b, a-b)

  如果有附加的一个自然数m,

  则: gcd(ma,mb)=m * gcd(a,b) (分配律)

  gcd(a+mb ,b)=gcd(a,b)

  如果m是a和b的最大公约数,

  则: gcd(a/m ,b/m)=gcd(a,b)/m

  在乘法函数中有:

  gcd(ab,m)=gcd(a,m) * gcd(b,m)

  两个整数的最大公约数主要有两种寻找方法:

  * 两数各分解质因子,然后取出同样有的项乘起来

  * 辗转相除法(扩展版)

  和最小公倍数(lcm)的关系:

  gcd(a, b) * lcm(a, b) = ab

  a与b有最大公约数,但不一定有最小公约数

  两个整数的最大公因子可用于计算两数的最小公倍数,或分数化简成最简分数。

  两个整数的最大公因子和最小公倍数中存在分配律:

  * gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c))

  * lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c))

  在坐标里,将点(0, 0)和(a, b)连起来,通过整数坐标的点的数目(除了(0, 0)一点之外)就是gcd(a, b)。

  以上的全部内容就是老师为大家带来的初中数学公约数的性质知识点,想必同学们都熟记于心了吧。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:初中数学正棱柱的几何知识点
下一篇:上海初中数学等腰直角三角形知识点

逍遥学能在线培训课程推荐

【初中数学公约数的性质知识点结构】相关文章
【初中数学公约数的性质知识点结构】推荐文章