高中数学公式(积化和差公式)_高中数学公式

逍遥学能  2014-06-06 10:42

各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家整理了高中数学公式(积化和差公式),希望同学们牢牢掌握,不断取得进步!

公式

sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

证明

法1

积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。

即只需要把等式右边用两角和差公式拆开就能证明:

sinαsinβ=-1/2[-2sinαsinβ]

=-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)]

=-1/2[cos(α+β)-cos(α-β)]

其他的3个式子也是相同的证明方法。

(该证明法逆向推导可用于和差化积的计算,参见和差化积)

法2

根据欧拉公式,e^ix=cosx+isinx

令x=a+b

得e ^I(a+b)=e^ia*e^ib=(cosa+isina)(cosb+isinb)=cosacosb-sinasinb+i(sinacosb+sinbcosa)=cos(a+b)+isin(a+b)

所以cos(a+b)=cosacosb-sinasinb

sin(a+b)=sinacosb+sinbcosa

记忆方法

积化和差公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了特点各自的简单记忆方法。

【1】这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该 是

[-2,2],而积的值域确是[-1,1],因此除以2是必须的。

也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:

cos(α-β)-cos(α+β)

=(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)

=2sinαsinβ

故最后需要除以2。

以上就是为大家整理的高中数学公式(积化和差公式),希望同学们阅读后会对自己有所帮助,祝大家阅读愉快。


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高一数学学习的五个不良学习状态
下一篇:做好高中数学题的方法

逍遥学能在线培训课程推荐

【高中数学公式(积化和差公式)_高中数学公式】相关文章
【高中数学公式(积化和差公式)_高中数学公式】推荐文章