高二数学学习:高二数学不等式

逍遥学能  2014-05-27 11:14

为大家提供“高二数学学习:高二数学不等式”一文,供大家参考使用:

高二数学学习:高二数学不等式

九、不等式

一、不等式的基本性质:

注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

(2)注意课本上的几个性质,另外需要特别注意:

①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。

②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小

二、均值不等式:两个数的算术平均数不小于它们的几何平均数。

基本应用:①放缩,变形;

②求函数最值:注意:①一正二定三相等;②积定和最小,和定积最大。

常用的方法为:拆、凑、平方;

三、绝对值不等式:

注意:上述等号“=”成立的条件;

四、常用的基本不等式:

五、证明不等式常用方法:

(1)比较法:作差比较:

作差比较的步骤:

⑴作差:对要比较大小的两个数(或式)作差。

⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。

(2)综合法:由因导果。

(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……

(4)反证法:正难则反。

(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

放缩法的方法有:

⑴添加或舍去一些项,

⑵将分子或分母放大(或缩小)

⑶利用基本不等式,

(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

以上就是“高二数学学习:高二数学不等式”的所有内容,希望对大家有所帮助!


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:化学告别“差生”的七条策略
下一篇:08CCTV杯英语演讲大赛视频选播??孟燕妮

逍遥学能在线培训课程推荐

【高二数学学习:高二数学不等式】相关文章
【高二数学学习:高二数学不等式】推荐文章